Comparison of Particulate Nitrate Formation in Different Chemical Regimes

Charles L. Blanchard George M. Hidy Envair

American Association for Aerosol Research

Acknowledgments

J. Seinfeld – SCAPE2 A. Nenes - ISORROPIA

E. S. Edgerton – SEARCH data

B. E. Hartsell - SEARCH data

J. J. Jansen – SEARCH data

Electric Power Research Institute – MMW data

Southern Company
Lake Michigan Air Directors Consortium
Western States Petroleum Association

Overview – Applications of Equilibrium Models

Locations

- Central and southern California (SCAQS, CADMP, IMS95)
- Midwest (MMW)
- Southeastern US (SEARCH)

Approach

- Apply SCAPE2 and ISORROPIA
- Compare predictions and measurements
- Run scenarios with reduced sulfate, HNO₃, or NH₃

Scope of Modeling — Partition Between Gas and Condensed Phases

Accuracy of Model Predictions – Select Days and Check Predictions

- Exclude high-RH (>95 %) days
- Simulate each sample
- Compare predictions with measurements

How Does PM Nitrate Respond – Evaluate Reduced Sulfate, HNO₃, or NH₃

- ~20 to 300 individual samples per site
- 3 hour 24 hour sample duration
- 10 to 30 simulations for each sample
- Reduce sulfate, or HNO₃, or NH₃ in increments of 10 to 20 percent
- Examine changes in PM nitrate
- Summarize using sample means and distributions

California, San Joaquin Valley – *PM NO₃ Decreases as HNO₃ Decreases*

Southern California – PM NO₃ Decreases as HNO₃ Decreases

Midwest – When SO₄ Decreases – NO₃ Up, Then Declines as HNO₃ Decreases

Current conditions (in boxes) compared to 50% lower sulfate with varied HNO₃

Aug-Sep 1999

Jan-Feb 2000

Isopleths of Predicted Fine PM – Compact Graphical Representation

- What are net effects of changes in sulfate, HNO₃, and NH₃?
- Predict PM mass change
 - measured fine mass minus change in inorganics
 - inorganics = sum of sulfate, nitrate, ammonium
- Means of individual samples

MARCH Midwest Urban Sites – Seasonal Sensitivity to HNO₃

Predicted PM2.5 Mass Concentration (µg m-3)

MARCH Midwest Rural Site – Winter Sensitivity to HNO₃

Predicted PM2.5 Mass Concentration (µg m-3)

SEARCH Atlanta Site – Limited Sensitivity to HNO₃

Predicted PM2.5 Mass Concentration (μg m-3)

SEARCH Rural Sites – *Little Sensitivity to HNO*₃

Predicted PM2.5 Mass Concentration (μg m-3)

Atlanta Compared With Chicago – Atlanta Less Sensitive to HNO₃

Predicted PM2.5 Mass Concentration (μg m-3)

Sulfate Reduction in Chicago - Many Samples Currently NH₃-Rich

Sulfate Reduction in Rural MW - Shifts From NH₃-Poor to NH₃-Rich

Sulfate Reduction in Atlanta - Shifts From NH₃-Poor to NH₃-Rich

Sulfate Reduction in Rural SE - Composition Remains NH₃-Limited

Conclusions

- PM nitrate formation is more ammonialimited in the SE US than in Midwest and California – ammonia sources?
- Mean PM mass concentrations always decrease in response to sulfate reductions but by different amounts due to varying responses of PM nitrate
- PM nitrate response depends upon availability of ammonia – control strategy?